Авторизация



Поделиться


Физиология
Физиология синапсов PDF Печать E-mail
Рейтинг пользователей: / 3
ХудшийЛучший 
Биология - Физиология
Автор: Hellhammer   
28.01.2011 13:50

Физиология синапсов

Синапс (от греч. synapsis) обозначает соединение, связь – это специализированная зона контакта между нейронами или нейронами и другими возбудимыми образованиями, обеспечивающая передачу возбуждения с сохранением, изменением или исчезновением ее информационного значения. Данный термин был предложен Ч. Шеррингтоном (1897) для обозначения функционального контакта между нейронами. Справедливости ради нужно отметить, что еще в 60-х годах XIX столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить происхождение даже самых простых рефлексов.

Синапсы различают: 1) по их местоположению; 2) по способу передачи сигналов.

1) По местоположению выделяют синапсы центральные и периферические. Центральные синапсы – это синапсы, которые осуществляют контакт между нейронами в центральной нервной системе. К ним относятся аксо-аксональные синапсы, аксо-дендритические, аксо-соматические, дендро-дендритические (обнаружены гистологически; функциональное значение не вполне ясно). Центральные синапсы классифицируют также по знаку их действия – возбуждающие и тормозные. Кроме того, распространено деление синапсов по тому медиатору (передатчику), который осуществляет посредничество: адренергические синапсы, холинергические синапсы и др. К периферическим синапсам относят нервно-мышечные, синапсы вегетативных ганглиев (синапсы, образованные преганглионарными и постганглионарными волокнами).

2) По способу передачи синапсы классифицируются как химические и электрические.

Для всех этих образований характерно наличие пресинаптической мембраны, синаптической щели (10-50 нм), постсинаптической мембраны. Пресинаптическая мембрана является мембраной пресинаптического окончания отростка нейрона (чаще всего аксона). У человека и высших позвоночных животных наибольшее распространение получили химические синапсы. Химические синапсы в преси-наптическом окончании содержат везикулы с медиатором, химическим передатчиком. Ширина синаптической щели в среднем составляет 20 нм. На постсинаптической мембране содержатся рецепторы к данному медиатору, ферменты, разрушающие данный медиатор. Таким образом, постсинаптическая мембрана является рецепторной частью синапса, ею может быть специфически дифференцированный участок дендрита, тела нейрона и его аксона.

В электрическом синапсе не вырабатывается медиатор. Синаптиче-ская щель несколько меньше, чем у химического синапса (2-4 нм). В си-наптической щели между пре- и постсинаптической мембранами имеются белковые мостики-каналы шириной 1-2 нм, где движутся ионы и небольшие молекулы. Это способствует более низкому, чем у пресинаптической мембраны, сопротивлению постсинаптической мембраны. Поэтому возбуждение от пресинаптической мембраны к постсинаптической мембране в электрических синапсах передается электрическим путем, т.е. осуществляется эфаптическая передача. В отличие от химических синапсов, электрические синапсы отличаются большей скоростью проведения возбуждения, высокой надежностью передачи, возможностью двустороннего проведения. Электрические синапсы обнаружены у крыс в вестибулярном ядре продолговатого мозга, в структурах дыхательного центра продолговатого мозга (при этом обсуждается их роль в механизмах автоматического ритмогенеза дыхания); у кошки электрические синапсы обнаружены между нейронами нижних олив, в структурах таламуса, между фоторецепторами сетчатки и горизонтальными клетками у рыб и др. Но все-таки наибольшее распространение в процессе эволюции по-лучили химические синапсы. Это обусловлено рядом свойств этих образований, которые имеют большое значение в организации деятельности нервной системы (рис. 1.4).

 

Рис. 1.4. Синапс (рисунок взят из книги: Мозг / под ред. П.В. Симонова. М.: Мир, 1984)

Обновлено 16.08.2011 09:49
Подробнее...
 
Распространение возбуждения в нервных волокнах PDF Печать E-mail
Рейтинг пользователей: / 2
ХудшийЛучший 
Биология - Физиология
Автор: Hellhammer   
28.01.2011 13:29

Функции нервных волокон

 

Распространение возбуждения в нервных волокнах.

Изменения мембранного потенциала, вызываемые электрическим током, подразделяются на пассивные и активные.

Пассивные, или электротонические, изменения мембранного потенциала определяются физическими (электрическими) параметрами как самой мембраны, так и всей клетки (волокна) в целом.

Пассивные сдвиги мембранного потенциала возникают при действии на возбудимые образования электрического тока любой силы, формы или направления. Однако если при гиперполяризующем (анодном) и слабом деполяризующем (катодном) токах пассивные изменения потенциала могут наблюдаться в чистом (неосложненном) виде, то при близких к порогу и сверхпороговых деполяризующих стимулах они сопровождаются активными сдвигами потенциала: локальным ответом и потенциалом действия, связанными с изменениями ионной проницаемости мембраны.

Пассивные свойства мембраны и всего волокна в целом в значительной мере определяют условия возникновения и распространения возбуждения в нервном волокне.

Исследования показывают, что в однородно поляризуемом, однородном участке нервного волокна изменения мембранного потенциала при приложении прямоугольного толчка гиперполяризующего или слабого деполяризующего тока нарастают по экспоненте: , где RC = τ – постоянная времени мембраны, т.е. время, в течение которого потенциал нарастает до 63% от своей конечной величины. При выключении тока потенциал возвращается к исходному уровню по экспоненте с той же постоянной времени τ. Такие изменения мембранного потенциала принято называть пассивными или электротоническими, в отличие от активных, связанных с повышением или снижением ионных проводимостей мембраны.

Подобные изменения наблюдаются на сферических клетках (на со-ме). Описание цилиндрической клетки, в частности аксона, более сложно. В этом случае уже нельзя считать внутренний проводник эквипотенциальным по всей длине. Внешний проводник можно считать эквипотенциальным за счет увеличения объема внеклеточной жидкости. Потенциал на такой мембране зависит не только от времени включения тока, но и от расстояния х по отношению к месту приложения тока: , где а – радиус волокна, R – удельное сопротивление аксоплазмы, CМ и RМ – емкость и сопротивление на единицу площади мембраны. Левая часть уравнения описывает плотность тока через каждую точку мембраны, которая равна сумме плотностей емкостного ( ) и омического ( ) токов, стоящих в правой части уравнения. Через длительное время (намного большего постоянной времени  = RМ CМ) после включения импульса емкость мембраны полностью зарядится и емкостный ток станет равным нулю. Уравнение примет вид: . Его решение: , где V0 – потенциал в начале кабеля (х = 0),  – постоянная длины волокна. Постоянная длины характеризует крутизну затухания потенциала вдоль волокна. Чем больше , тем дальше по волокну проходит сигнал. Скорость электротонического распространения пропорциональна удвоенной величине константы длины волокна  и обратно пропорциональна постоянной времени  = RМ CМ. Величина  может быть выражена через сопротивление мембраны RМ , сопротивление внутренней среды – аксоплазмы Ri и диаметра волокна d: . Кабельные свойства нервных волокон оказывают существенное влияние не только на развитие электротонических потенциалов, но и на характер активных ответов – величину порога, амплитуду, крутизну нарастания и длительность потенциала действия. В настоящее время можно считать строго доказанным, что проведение потенциала действия (ПД) вдоль нервного волокна осуществляется с помощью локальных токов, возникающих между возбужденным и покоящимся участками мембраны. Локальный ток изменяет величину мембранного потенциала покоя в покоящемся участке до критического уровня деполяризации, что и является причиной возникновения потенциала действия. Многочисленными исследованиями было показано, что скорость проведения пропорциональна постоянной длины волокна  и обратно пропорциональна постоянной времени мембраны  (Чайлохян Л.М., 1962). Поскольку в безмякотных нервных волокнах  пропорциональна квадратному корню из диаметра волокна , скорость проведения при прочих равных условиях также пропорциональна корню квадратному из диаметра волокна. В миелинизированных нервных волокнах проведение происходит сальтаторно – от перехвата Ранвье к перехвату Ранвье. Длина межпере-хватного участка примерно пропорциональна диаметру волокна, поэтому скорость проведения в этих волокнах пропорциональна не корню квадратному из диаметра волокна, а просто его диаметру. Принято считать, что скорость проведения зависит от величины так называемого фактора безопасности (гарантийности) Ф, т.е. отношения амплитуды распространяющегося ПД к пороговому потенциалу. Пороговый потенциал – это та величина, на которую нужно изменить мембранный потенциал, чтобы достичь критического уровня деполяризации. , где Vs – амплитуда ПД, Vt – пороговый потенциал. При Ф = Vt распространения возбуждения нет. Для аксона краба это отношение равно 7. Было показано, что пороговый потенциал Vt находится в тесной зависимости от чувствительности системы натриевой проницаемости мембраны к деполяризации. Чем выше эта чувствительность, т.е. чем на большую величину повышается PNa и, соответственно, натриевый входящий ток INa при данном сдвиге потенциала, тем ниже порог, и наоборот.

Обновлено 16.08.2011 09:50
Подробнее...
 
Нейрон как структурно-функциональная единица нервной системы PDF Печать E-mail
Рейтинг пользователей: / 4
ХудшийЛучший 
Биология - Физиология
Автор: Hellhammer   
28.01.2011 13:11

ОБЩАЯ ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Нейрон как структурно-функциональная единица нервной системы

 

Структура нервной клетки

Нейроны, или нервные клетки, являются структурно-функциональными единицами нервной системы. Несмотря на то, что эти клетки имеют те же самые гены, то же самое строение и тот же самый биохимический аппарат, что и другие клетки, они обладают и уникальными способностями, которые делают функцию мозга отличной от функции других органов. Важными особенностями нейронов является характерная форма, способность наружной мембраны генерировать нервные импульсы и наличие уникальной структуры, синапса, служащего для передачи информации от одного нейрона к другому. Нервные клетки чрезвычайно вариабельны по своему строению. В каждой из групп чувствительных, ассоциативных и двигательных нейронов имеется большое разнообразие форм, размеров тела клеток, величины и характера ветвления их отростков (рис. 1.1). Тело нейрона. По форме тела различают пирамидные, многоугольные, круглые и овальные клетки. На основании количества отходящих от тела клетки отростков все нейроны подразделяются на униполярные, биполярные и мультиполярные. Отростки могут отходить более или менее равномерно (радиально) от всей поверхности тела клетки либо концентрированно от одного из полюсов. Мультиполярные нейроны наиболее вариабельны по форме и имеют по нескольку отростков. Общепринято считать, что один из них – аксон (нейрит), который может начинаться как от тела клетки, так и от проксимальной части одного из дендритов. От тела биполярной клетки отходят два отростка. Тот из них, который направляется на периферию, принято считать дендритом, а центральный отросток – аксоном. Тела униполярных нейронов имеют овальную форму. От тела клетки отходит один крупный отросток, который на некотором расстоянии делится на два отростка: периферический и центральный. Форма клеточного тела целиком зависит от местоположения клетки в соответствующем участке нервной системы. На форму нервных клеток могут оказывать влияние соседствующие с ними кровеносные сосуды, пучки волокон или даже от-дельные миелинизированные волокна крупного диаметра. Таким образом, одинаковые в функциональном отношении нервные клетки могут быть разными по форме.

 

 

Рис. 1.1. Нейрон зрительной коры кошки (микрофотография). На микрофотографии хорошо видны тело и дендриты нейрона (рисунок взят из книги: Мозг / под ред. П.В. Симонова. М.: Мир, 1984)

Обновлено 16.08.2011 09:51
Подробнее...
 
Центральная нервная система (ЦНС) PDF Печать E-mail
Рейтинг пользователей: / 2
ХудшийЛучший 
Биология - Физиология
Автор: Hellhammer   
28.01.2011 13:09

Центральная нервная система (ЦНС)

Центральная нервная система (ЦНС) в организме выполняет интегрирующую роль, объединяя в единое целое все ткани, органы и координируя их специфическую активность в составе целостных гомеостатических и поведенческих функциональных систем. Выполнение интегрирующей роли ЦНС осуществляет через свои функции.

Основными функциями ЦНС являются:

1. Управление деятельностью опорно-двигательного аппарата. ЦНС регулирует тонус мышц и посредством его распределения поддерживает естественную позу, а при нарушении восстанавливает ее, а также инициирует все виды двигательной активности.

2. Регуляция работы внутренних органов. Осуществляется авто-номной нервной системой и эндокринными железами. Основная за-дача этой функции – поддержание гомеостаза (постоянства внутренней среды) в состоянии покоя и при различных видах деятельности.

3. Обеспечение адаптивного поведения организмов в изменяющейся окружающей среде.

4. Обеспечение высших психических функций: восприятие, внимание, эмоции, мышление, сознание, память. Язык как средство коммуникации, базирующееся на второй сигнальной системе.

 

 

Обновлено 16.08.2011 09:52
Подробнее...
 
<< Первая < Предыдущая 11 12 13 Следующая > Последняя >>

Страница 13 из 13